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Efficient suppression of radiation damping in resonant retardation-based plasmonic structures
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We propose an innovative approach to the design of retardation-based plasmonic structures allowing effi-
cient suppression of radiation damping and increase in resonance quality (Q) factors. The underlying idea
consists of conformal structure transformation suppressing its electric-dipole response in favor of magnetic-
dipole one. We show that bending of plasmonic nanoantennas increases significantly their Q factors up to the
electrostatic limit while preserving the nature of resonance along with its exceptional features such as linear

size-dependent tunability and robust field enhancement.
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Nanometer-sized metal structures exhibit spectacular
resonant properties in the visible and infrared spectra, which
is in fact a counterintuitive feature given the fact that their
dimensions are well below the optical wavelength. Probably
the most intensively investigated resonances are the so-called
electrostatic resonances, which are associated with resonant
(localized) electron oscillations in metal nanostructures of
different shapes and configurations (see Ref. 1, and refer-
ences therein). These resonances feature scale-invariant reso-
nant wavelengths (determined by shapes and dielectric re-
sponses of constituents) and shape-invariant quality (Q)
factors, which are related to the radiation absorption and thus
determined only by the complex dielectric function of metals
used.? Resonances of another type, the so-called retardation-
based resonances,’ involve the excitation, propagation, and
interference of surface electromagnetic excitations, i.e.,
surface-plasmon polariton (SPP) modes, resonantly coupled
to collective electron oscillations at the metal surface.* The
most remarkable feature of these resonances is their (almost)
linear size-dependent tunability extending over a very broad
range of wavelengths.>® This behavior stems from both tight
confinement and guiding (potentially with no cutoff’) of SPP
fields by the same metal structure, allowing constructive in-
terference of propagating back and forth SPP waves that are
efficiently reflected by structure terminations. Being tightly
confined to the metal and featuring large effective indexes
(i.e., low phase velocities), these plasmonic modes are often
referred to as slow SPPs (S-SPPs).? Nanoresonators and
nanoantennas based on S-SPPs (Refs. 8—11) have been
shown to exhibit anisotropic responses as well as strong field
enhancements, making them potentially interesting for chal-
lenging applications in nano-optics.'>'® Unfortunately, be-
sides these superior features, retardation-based resonances
exhibit a strong damping of the resonant oscillations, which
is dominated by the electric-dipole radiation enhanced due to
linear geometry of plasmonic currents oscillating along the
structure longitudinal axis. Moreover, their relatively low QO
factors decrease rapidly when the resonances are tuned to
longer wavelengths because the electric-dipole moment also
scales with the structure longitudinal size. Fundamentally,
the main question posed? is whether the Q factor of an indi-
vidual structure can be increased beyond the quasistatic limit
when including the wave retardation. It was also suggested
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to consider plasmon resonances in which strong electric-
dipole radiation, causing the additional (as compared to the
quasistatic case) radiation loss, can be suppressed.?

In this Brief Report we propose and analyze an innovative
approach to the control of resonance quality in retardation-
based resonant nanostructures. The general idea is to sup-
press the electric-dipole response (primarily responsible for
the radiation damping) in favor of a magnetic-dipole re-
sponse by means of a conformal geometric transformation
that preserves the nature of resonance.

For this purpose, we considered light scattering by 20-
nm-thick silver strips having width w and different bending
radii R surrounded by air (Fig. 1). The strip length along the
z axis was assumed to be infinite, i.e., much longer than w,
thus allowing a rigorous two-dimensional modeling in the xy
plane based on the surface-integral equation method for the
magnetic field.!”'® The silver refractive index data were
taken from Ref. 19.

In a first set of simulations, we computed the scattering
cross-section spectra of several strips with the same width
w=300 nm and different values of the bending radius R. The
structures were excited by an incident p-polarized plane
wave propagating at an angle of 90° with respect to the x
axis (Fig. 2). It is seen that bent strips (solid lines), as com-
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FIG. 1. (Color online) Schematic of the considered nanostruc-
tures obtained from a metal (silver) nanostrip by conformal bending
transformation with different bending radii R. The strip thickness
t=20 nm and the strip width w are in the range of few hundred
nanometers. The strips are assumed to be infinitely long in the z
direction.
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FIG. 2. (Color online) Scattering cross-section spectra (normal-
ized to the semiperimeter p of the structures) for 20-nm-thick silver
strips of different geometries: 300-nm-wide strips with different
bending radii R (solid lines); straight strips of different widths w for
comparison (dashed lines).

pared to a straight strip (black dashed line), exhibit the fol-
lowing two distinctive features when the bending radius de-
creases: (i) the resonance wavelength (i.e., the peak
wavelength A, in the scattering spectrum) is progressively
redshifted; (ii) the Q factor (defined as the ratio between the
resonance wavelength and the full width at half maximum of
the scattering line) is progressively increased, albeit at the
expense of a limited decrease in the peak value. For example,
bent strips with the bend radii R=50 nm and R=48.5 nm
exhibit the Q factor of 21 and 31, respectively, values to be
compared with the Q factor of 1.4 for the straight geometry.
The improvement achieved is even more evident if one re-
lates these bent strips with straight strips tuned (by selecting
their length) to the same resonance wavelengths, ~1350 and
~1841 nm, respectively (see green and red dashed lines in
Fig. 2).

An explanation for such a drastic increase in the Q factor
caused by the bending can be gained via monitoring of the
evolution of differential (angular) scattering cross section un-
der resonance excitation. It is seen (Fig. 3) that three struc-
tures of the same width w=300 nm and different curvatures,
i.e., a straight strip, a bent strip with R=70 nm, and a bent
strip with R=50 nm, exhibit very different contrasts in an-
gular scattering spectra. Here, the resonant excitation was
provided by a p-polarized plane wave at 815, 915, and 1350
nm, respectively. Note that for the straight strip the scattering
cross section behaves as sin?(8) just like an oscillating di-
pole oriented along the x axis.?’ It has in fact been noticed
that the field pattern formed by a straight metal nanostrip
corresponds to that of an electric dipole.?! This behavior can
be easily understood by considering that the S-SPP mode
propagating back and forth along the strip axis corresponds
to a longitudinal plasmonic current oscillating at the same
mode frequency. On the contrary, bent strips exhibit a rather
distinctive feature, showing a high constant (namely, 8 inde-
pendent) contribution to the angular scattering diagram
which is typical of a magnetic dipole with a dipole moment
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FIG. 3. (Color online) (a) Angular scattering cross section (with
1° resolution) under resonant excitation for three structures of dif-
ferent curvature. (b) Effect of the interaction between strip termina-
tions on the redshift of the resonance.

oscillating along the z axis.?’ We conclude that the bending
of the strip axis, resulting in a bending of the plasmonic
currents (partially closing in a loop by means of displace-
ment currents in the gap between strip terminations), induces
a magnetic-dipole response in the structure that forbids
strong electric-dipole radiation. As a consequence, efficient
suppression of radiation damping is achieved, resulting in a
dramatic increase in the Q factor in an isolated (i.e., single)
nanostructure.

We already noticed that the resonance wavelength in the
scattering spectra of Fig. 2 is progressively redshifted as the
curvature is increased even though the strip width is kept
constant. This feature is seemingly in contrast with what
would be expected from retardation-based resonances since,
for example, in straight nanostrips, the (fundamental) reso-
nance wavelength has been found to scale almost linearly
with the strip width in accord with the Fabry-Perot-like reso-
nance condition:

(WIN,) = (7 = $)2 TNy, (1)

where n. is the effective index of a S-SPP mode bound to
and propagating along a metal film with the same thickness
as the strip, and ¢ is a phase change (modulus 7r) due to
reflection at strip terminations. Actually, the phase ¢ is a
very critical parameter to take into account because not only
are the S-SPPs incident at strip terminations but also near
field and other (non-SPP) propagating field components gen-
erated at one strip termination, influencing the total field at
the other termination and thus the reflection of S-SPPs.
Therefore it is expected that ¢ should significantly change in
bent strips with respect to the straight strip as the bending
radius is decreased because of the strong interaction between
strip terminations, with the outcome of a dramatic shift in the
resonance wavelength. To check this point we compared the
scattering cross sections of a straight, S-bend, and circularly
bent strips having the same thickness =20 nm, width w
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FIG. 4. (Color online) (a) Tuning of the plasmon resonance
under a constant gap width g=6 nm. (b) Strip length (circles), Q
factor (squares), and maximum field enhancement (triangles) as a
function of the desired resonance wavelength. Black solid line rep-
resents the tuning curve derived from Eq. (1) assuming the effective
formula reported in Ref. 21 and a reflection phase ¢=2.12 rad
fitted on numerically computed data.

=300 nm, and curvature magnitude R=95.5 nm, except for
the straight strip [Fig. 3(b)]. It is clearly seen that the S-bend
strip, having the two terminations far apart from each other
and thus allowing no interaction between them, different to
the case of the circularly bent strip, exhibits no redshift in the
resonance wavelength, thus precisely satisfying the reso-
nance condition given by Eq. (1). This is another indication
that the conformal transformation preserves the S-SPP mode,
with full exploitation of retardation effects.
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The aforementioned features of resonant scattering by
bent nanostrips allowed us to deduce that, by imposing a
constant gap size and achieving thereby an almost bending-
independent phase change ¢, the resonance wavelength of
bent strips can be tuned linearly with the strip width [Eq.
(1)]. The expected behavior was indeed found in calculations
of the scattering cross-section spectra of bent strips of differ-
ent width but with a constant gap g=6 nm measured along
the circularly bent axis of the strip (Fig. 4). Note that in view
of constant gap size, as the strip width increased the bending
radius was accordingly increased to fulfill the condition w
=2mR—g. It is seen that the resonance wavelength is almost
linearly dependent on the strip width in a broad wavelength
range as expected from Eq. (1) [Fig. 4(b)]. This linear scal-
ing is similar to what has been reported for straight
nanostrips® but with dramatically improved Q factors exhib-
iting only weak degradation with the wavelength increase
[Fig. 4(b)]. This result demonstrates that our design allows
efficient suppression of radiation damping at any wavelength
in the near infrared. We also investigated the influence of the
conformal transformation on field-enhancement effects under
resonant excitation by considering the structures selected
among the set reported in Fig. 2 (Fig. 5). As expected, for
relatively large bending radii, the intensity pattern of the bent
strip resembles the one of a straight strip after a conformal
(bending) transformation in the xy plane [Fig. 5(a)], exhibit-
ing maxima of the order of 20 located at strip
terminations.>?! With the bending radius being further de-
creased, the field becomes more and more concentrated in
the region between strip terminations, and field enhancement
strongly increases as well [Fig. 5(b)]. Note also that as the
gap region becomes a few nanometers wide, the maximum
field enhancement turns to be very sensitive to the bending
radius [see Figs. 5(b) and 5(c)], stepping from 120 for R
=50 nm to 180 for R=49.3 nm, a sensitivity that might be
related to a large variation in the gap width (from g
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=142 nm to g=9.8 nm). This behavior indicates that the
maximum field enhancement achieved is mostly influenced
by the strong interaction between strip terminations rather
than by the geometrical curvature. In fact for a given gap
width, the maximum field enhancement exhibits a limited
variation as the strip width (and accordingly the bending
radius) is varied in a wide wavelength range [Fig. 4(b)]. De-
tailed computations of the field distribution shown in Fig.
5(c) in the gap region reveals that the maximum field en-
hancement is achieved close to the bottom corners of the gap
region although exhibiting relatively high values in the
whole gap area. It should be emphasized that the observed
field is not directly related to sharp metal corners. Thus, with
a slightly different design of the gap employing parallel ter-
minations, we found almost perfect uniformity of the field in
the gap with an intensity enhancement of ~4 X 10* [Fig.
5(e)]. Furthermore, computation of the x and y components
of the field (not shown here) confirmed that, as expected in
view of the short-range nature of the plasmon mode excited
(see Fig. 1 in Ref. 17), the field in the metal is completely
dominated by the longitudinal component. As a consequence,
the enhancement mechanism turns out to be intrinsically ro-
bust (i.e., virtually independent on the radius of curvature at
the gap corners), being imposed by boundary conditions at
the flat interface of strip terminations. Actually, the field is
expected to experience a jump of about the absolute value of
the silver dielectric constant [~175 for the case of Fig. 5(e)]
when crossing the flat metal boundaries of the gap.

In conclusion, we have demonstrated an innovative design
for retardation-based resonant nanostructures providing effi-
cient suppression of radiation damping with a dramatic im-
provement in the Q factor of the plasmonic resonance. The
underlying idea is to exploit the magnetic-dipole response
induced in a metal-strip nanoantenna after a conformal bend-
ing transformation. Our simulations revealed that all the im-
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portant features provided by retardation effects are preserved
while the Q factor of the resonance was found approaching
the electrostatic limit? in the near infrared. It is very interest-
ing (and worth separate discussion) that virtually the same Q
factor can be observed for electric-dipole-like metal nano-
structures in the electrostatic limit?> and retardation-based
ones in the magnetic-dipole limit (considered in this work).
We think that the Q factor of localized plasmon resonances
found in the electrostatic limit?> might turn out to be the fun-
damental limit for Q factors of plasmon resonances in nano-
structures because it is related only to Ohmic loss in electron
oscillations (i.e., to the absorption cross section) and can be
only decreased with the radiation loss becoming important
(i.e., with the increase in the scattering cross section). Fur-
thermore, we found that, under a strong bending of struc-
tures, the resulting split-ring-shaped nanoantennas feature an
intense field enhancement (~4 X 10%) in the whole gap area.
Also, we believe that our design can be profitably applied to
other kinds of plasmonic nanoantennas and nanoresonators
based on retardation effects, such as metal nanorods and
nanowires (which are the three-dimensional analogs of
nanostrips) to enhance both the Q factor and the field en-
hancement of a single-structure nanoantenna with simulta-
neous control of the resonance tunability. Finally and more
fundamentally, our analysis also contributes to the investiga-
tion of magnetic plasmon resonances in metamaterials (see,
for example, Ref. 22 and references therein) by revealing
that the magnetic response exhibited in the visible and infra-
red by C-shaped or split-ring-shaped metal nanostructures
arises from the resonant excitation of plasmonic current
loops associated with S-SPP modes, providing unique insight
into the physics of single metamaterial atoms (that has been
so far interpreted according to an electric circuit model??),
and thus bridging in a sense the gap between metamaterials
and plasmonics.
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